Set Notation: Cheatsheet
My cheatsheet on mathematical set notation.
In the following examples, A = {1, 2, 3} and B = {3, 4}.
Symbol | Meaning | Example |
---|---|---|
{ } | Set | {1, 2, 3} |
\( \cup \) | Union | \( A \cup B \) = {1, 2, 3, 4} |
\( \cap \) | Intersection | \( A \cap B \) = {3} |
\( - \) | Difference | \( A - B \) = {4} |
\( \subset \) | Subset (proper, cannot equal to the set itself) | {1, 2} \( \subset \) A |
\( \subseteq \) | Subset, can equal the full set | {1, 2, 3} \( \subset \) A |
\( \in \) | Element or “in” | {1,2} \( \in \) {1, 2, 3, 4} |
\( \supset \) | Superset | {1, 2, 3, 4}\( \supset \) {1, 2, 3} |
\( \supseteq \) | Superset, can equal the full set | {1, 2, 3, 4}\( \supseteq \) {1, 2, 3, 4} |
\( \emptyset \) | Empty Set | {} |
\( \mathbb{U} \) | Universal set | Set containing all possible values. |
\( A^\text{C}\) | Complement | Difference of a set with its universal set |
\( \times \) | Cartesian Product | \( A \times B \) = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)} |
\( \vert A \vert \) | Cardinality (number of elements in a set) | \( \vert A \vert = 3 \) |
| or : | “Such that” or “Given”, used in set construction | { n | n > 1 and n < 4} = {2, 3} |
\( \forall \) | For all | \( \forall x>1, x < x^2 \) |
\( \exists \) | There exists | \( \exists x | x = x^2 \) |
\( \therefore \) | Therefore | \( a = b \therefore a^2 = b^2 \) |
Number sets
Symbol | Meaning |
---|---|
\( \mathbb{N} \) | Natural numbers (counting numbers and 0) |
\( \mathbb{Z} \) | Integers |
\( \mathbb{Q} \) | Rational numbers |
\( \mathbb{A} \) | Algebraic numbers |
\( \mathbb{R} \) | Real numbers |
\( \mathbb{I} \) | Imaginary numbers |
\( \mathbb{C} \) | Complex numbers |